Schreier-Zassenhaus theorem for algebras. I
نویسندگان
چکیده
منابع مشابه
The Schur–zassenhaus Theorem
When N is a normal subgroup of G, can we reconstruct G from N and G/N? In general, no. For instance, the groups Z/(p2) and Z/(p) × Z/(p) (for prime p) are nonisomorphic, but each has a cyclic subgroup of order p and the quotient by it also has order p. As another example, the nonisomorphic groups Z/(2p) and Dp (for odd prime p) have a normal subgroup that is cyclic of order p, whose quotient is...
متن کاملThe Artin-schreier Theorem
The algebraic closure of R is C, which is a finite extension. Are there other fields which are not algebraically closed but have an algebraic closure which is a finite extension? Yes. An example is the field of real algebraic numbers. Since complex conjugation is a field automorphism fixing Q, and the real and imaginary parts of a complex number can be computed using field operations and comple...
متن کاملReverse Mathematics of the Nielsen-Schreier Theorem
The Nielsen-Schreier Theorem states that every subgroup of a free group is free. To formalize this theorem in weak subsystems of second order arithmetic, one has to choose between defining a subgroup in terms of a set of group elements and defining it in terms of a set of generators. We show that if subgroups are defined by sets, then the Nielsen-Schreier Theorem is provable in RCA0, while if s...
متن کاملA Reidemeister-schreier Theorem for Finitely L-presented Groups
We prove a variant of the well-known Reidemeister-Schreier Theorem for finitely L-presented groups. More precisely, we prove that each finite index subgroup of a finitely L-presented group is itself finitely L-presented. Our proof is constructive and it yields a finite L-presentation for the subgroup. We further study conditions on a finite index subgroup of an invariantly finitely L-presented ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1980
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1980.101680